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We have developed a simulation method with both electrons and ions
represented as particles-in-cell, in which the electrostatic field is determined
from the requirement of quasineutrality rather than from Poisson’s equation.
This approach permits self-consistent calculation of the potential, in quasineu-
tral situations where statistical fluctuations in the charge density frustrate the
use of Poisson’s equation. Time steps may be orders of magnitude longer
than the plasma period, and mesh cells orders or magnitude longer than the
Debye length, since electron plasma oscillations do not appear in the model
and the Debye length is essentially set to zero. The simulation technique
correctly represents kinetic features such as electron and ion Landau damping.
The method is demonstrated by application to several simple test problems,
including free expansion of a plasma, and linear and nonlinear ion sound. In
the case of a plasma with strongly magnetized electrons, we apply the tech-
nique to determine the parallel electric field and parallel transport within
the plasma. Quasineutral techniques for representing cross-field transport,
and edge effects in bounded plasmas, will be discussed in subsequent
publications. Q 1997 Academic Press

Key Words: Quasineutral plasma; plasma simulation; particle simulation;
particle-in-cell simulation.

1. INTRODUCTION

In particle-in-cell (PIC) simulations of plasmas, the standard technique [1–3] for
calculating the electrostatic field is to solve Poisson’s equation, with the charge
density source term determined by the laydown of the densities of electrons and
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ions, ne and ni . This procedure works well when the phenomena of interest proceed
on time scales comparable to the electron plasma frequency gp and spatial scales
comparable to the Debye length lD , and when there is substantial charge separation
between electrons and ions. However, there are many plasma problems where the
time and space scales are very much longer, and where the plasma maintains
quasineutrality throughout, i.e., une 2 niu ! ni . In these situations, it can be extraordi-
narily inefficient, or even unfeasible, to use Poisson’s equation.

One problem is that the simulation supports electron plasma oscillations, and
therefore the time step must be less than 2g21

p for stability. [4] In many situations,
electron oscillations play no role in the phenomena of interest, and the shortest
time scale that is actually of interest may be the period of a low-frequency
wave, an ion time scale, a collisional time scale, or a time scale for electron
transport over some macroscopic length. These time scales may be several orders
of magnitude longer. Implicit algorithms [5–11] have often been used to avoid
resolution of the electron plasma oscillation time scale. However, PIC simulation
techniques also face a more fundamental difficulty arising from the circumstances
of quasineutrality. The charge separation between electrons and ions, ne 2 ni ,
is often less than 1025 of the density of either electrons or ions. If both electrons
and ions are represented by simulation macroparticles, any attempt to calculate
the potential directly from Poisson’s equation would be futile, and overwhelmed
by statistical noise. For example, in a million-particle 2D simulation with a 100 3

100 grid, there are typically 100 macroparticle electrons or ions in each cell.
The physically correct value of the difference between the number of electrons
and ions in the cell would be on the order of 1023 macroparticles, clearly
unresolvable. The statistical fluctuations within the cell, although typically less
than the shot noise of Ï100 macroparticles, would typically be several orders
of magnitude larger than the actual value of ne 2 ni . Numerical schemes involving
Poisson’s equation are obviously very difficult (and actually inappropriate) in
the quasineutral limit. Indeed, Chen [12] noted long ago that, ‘‘In a plasma, it
is usually possible to assume ne 5 ni and = · E ? 0 at the same time. This is
a fundamental trait of plasmas, one which is difficult for the novice to understand.
Do not use Poisson’s equation to obtain E unless it is unavoidable!’’

Over the years, this advice has been applied in many analytic and numerical
models which represent the plasma as a fluid, or represent the electrons as either
a dielectric medium or a fluid within some hybrid scheme [13–22]. In cases where
the electron inertia is neglected, these methods circumvent the use of Poisson’s
equation by determining E from the electron momentum conservation equation.
In more complex treatments, electron inertia is retained, and the electric field is
determined from the electron and ion continuity and momentum equations, together
with the quasineutrality relation. These approaches, which are reviewed in detail
by Hewett [22], have also been combined with simplified treatments of the electro-
magnetic equations. In these fluid–electron models, ne and the irrotational part of
the electron current Je are not calculated from the response to specified fields, but
rather are set to the magnitude necessary to preserve quasineutrality. This procedure
eliminates temporal scales on the order of the electron plasma frequency, as well
as spatial structures on the Debye length scale.
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Hybrid models of this type are the technique of choice for quasineutral plasmas
whenever a fluid–electron formulation is acceptable. However, there are many
situations in which a fluid representation of the electrons is simply not valid. For
example, electron and ion kinetic phenomena may both be essential in modeling
wave phenomena, or the self-consistent calculation of non-Maxwellian energy distri-
butions may be essential to the modeling of inelastic collisional phenomena, e.g.,
ionization. In these types of situations, it may be necessary to resort to a PIC
representation for both the electrons and ions, even though any such model will
run considerably slower than a hybrid model. However, in PIC–electron/PIC–ion
simulations, the electron density must be calculated by pushing particle electrons
in response to fields, and no method has hitherto been available for doing this in
a way that maintains quasineutrality.

We present here a new approach to the simulation of quasineutral plasmas with
particle electrons and particle ions. Our approach is motivated by the quasineutral
fluid techniques described in the previous paragraph, and our objective is to use
grid spacing wide compared to the Debye length, and time steps long compared to
the electron plasma frequency. We believe that the technique can be used to treat
a wide variety of plasma problems. However, the primary objective of our present
work is multi-dimensional overall modeling of an electron cyclotron resonance
(ECR) reactor used for plasma processing. The plasma in this case is bounded,
partially ionized, collisional, and magnetized, with a typical plasma density 1012

cm23, electron temperature several eV, and neutral density several times 1013. The
scale size of the reactor is tens of cm (.103 lD), and the time scales of interest
range from 10 ns (electron transit times over cm size features, and electron collision
times) to hundreds of es (chemical equilibration), while g21

p > 10211 sec. In recent
years, there has been considerable interest in the use of particle-in-cell/Monte Carlo
(PIC/MC) codes to model this type of plasma [23–32]. Like pure PIC codes, these
have typically used Poisson’s equation to determine the electric field. In the present
paper, we discuss only the method for determining the internal electric field within
an unmagnetized bulk plasma, or parallel to the magnetic field in a magnetized
bulk plasma. In subsequent publications [33–35], we shall discuss self-consistent
techniques for dealing with sheaths, collisions, and chemistry, and with cross-field
transport in a magnetized plasma, within a multi-dimensional quasineutral
framework.

2. CALCULATION OF THE ELECTRIC FIELD

A. Unmagnetized One-Dimensional Plasma

We consider here only electrostatic fields, and for simplicity, we consider a one-
dimensional system specified by Cartesian coordinate z, although the formalism
can be extended to electromagnetic and multi-dimensional systems. We assume
that the simulation is globally quasineutral, i.e., the total number of electrons is
equal to the total number of ions. We also assume that the electron Debye length
is small compared to any scale length resolved in the model, and the electron plasma
frequency is fast compared to any time scale resolved in the model. Thus, if there
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were any departure from local quasineutrality, the resulting strong electric field
would drive electron currents to restore quasineutrality within a time scale of several
electron plasma periods, i.e., essentially instantaneously compared to the time scales
resolved in the model. Thus, the electric field always takes the value necessary to
keep the electron density ne equal to the ion density ni . To specify this electric
field, we can begin with the electron momentum conservation equation,

2eE 5
1
ne

Pe

z
1 nemeue 1

1
ne



t
(nemeue). (1)

Here, Pe(z, t) is defined as the electron kinetic pressure (including the stress associ-
ated with flow terms), ue(z, t) is the electron fluid velocity, and ne(z, t) is the mean
electron momentum transfer collision frequency. These quantities can be specified
as integrals over the electron distribution function fe(z, v, t),

Pe(z, t) ; E dv mev 2fe(z, v, t), (2a)

neue(z, t) ; E dv vfe(z, v, t), (2b)

nene(z, t) ; E dv n(z, v, t)fe(z, v, t). (2c)

These integrals, which appear in the first two terms on the right-hand side of Eq.
(1), can be evaluated at each point of the grid, by laying down the mean quantities
for the electrons assigned to that grid point. [The collision frequency n(z, v, t)
represents a sum over the various collisional processes which are represented in
the simulation as Monte Carlo events, dynamical friction, etc.]

The first two terms on the right-hand side of (1) represent the ambipolar electric
field, which balances the electron pressure gradients, flow gradients, and frictional
forces. For low-frequency plasma processes which maintain quasineutrality (the
only type of processes we wish to follow), the inertial term (last term of Eq. (1))
is smaller by order me/mi . In a quasineutral fluid formulation, the inertial term
would be neglected, and the ambipolar field would be used in the ion dynamical
equations to calculate ni at the next time step. Then ne would simply be set equal
to ni . However, this is not quite sufficient in a particle simulation, where the electrons
and ions evolve separately during each time step. With E set equal to the ambipolar
field, ne(z, t) remains constant in time (except for statistical fluctuations), while the
ion density ni(z, t) gradually evolves because of the relatively slow ion motion.
Thus the ambipolar field alone will not maintain the quasineutrality relation

ne(z, t) 5 ni(z, t). (3)

Even worse, particle simulations are always subject to statistical fluctuations in the
density and flux of any species at any given grid point, typically limited to &ÏN ,
where N is the number of particles in a grid site. Thus, a particle simulation code
must contain some mechanism for stably maintaining the quasineutrality relation
(3) in the face of these fluctuations, which are of much larger order than me/mi .
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We have found that for low-frequency phenomena the kinetic information of
interest is essentially contained in the ambipolar field, and that the last term of (1)
serves only the functional purpose of keeping ne equal to ni . This opens up the
possibility of keeping the ambipolar field but using an approximate technique to
maintain Eq. (3), rather than calculating the actual inertial term. In earlier work
[33], we have experimented with the technique of pushing the both the electrons
and ions in the ambipolar field alone, and then applying an approximate correction
field to the electrons which restores the quasineutrality condition. This worked well,
and we were able to prove that kinetic properties such as the Landau damping of
ion sound waves were preserved. However, this approach can become somewhat
complicated, especially when care is taken to conserve energy exactly. In the present
paper, we describe an approach which is even simpler, works extremely well over
very long times, and has excellent stability and energy conservation properties. This
approach is simply to replace Eq. (1) with a modified form of the ambipolar field,

2eE 5
1
ni



z
(niTe) 1 nemeue , (4)

where the electron kinetic pressure Pe(z, t) ; ne(z, t)Te(z, t) is replaced by
ni(z, t)Te(z, t), using the ion density instead of ne . Here, Te is a kinetic temperature
(including the energy associated with flows), defined by

ne(z, t)Te(z, t) ; E dv mev2fe(z, v, t). (5)

This simple artifice causes the electron density to remain closely coupled to the ion
density. This can be seen by writing the electron momentum conservation equation
in the form

me
ue

t
1

1
ne



z
(neTe) 1 eE 1 nemeue 5 0. (6)

Using Eq. (4) for E, this gives

me
ue

t
5 Te



z
ln Sni

ne
D. (7)

Equation (7) shows that the electrons are always accelerated up the gradient of
ni/ne , i.e., toward the point of maximum positive charge density. The result is that
the electron density oscillates about the ion density. Although these oscillations
are unphysical, they are rapid compared to ion time scales (but slow compared to
electron plasma time scales), and the oscillation amplitude always remains small if
the system is started in a quasineutral state and the time step is small enough to
resolve the oscillation frequency. The stability properties of these oscillations will
be discussed in Section 3, and examples will be given in Sections 5 and 6.
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B. Strongly Magnetized Electrons

In the application which we are studying, ECR plasma sources, the electrons
are strongly magnetized, with gyrofrequencies comparable to gp and gyroradii
comparable to the Debye length. Since we do not wish to resolve these short time
and space scales, it is convenient to use a guiding center representation of the
electrons. An electron is characterized by its curvilinear coordinate z along the field
line, its parallel velocity vi ; dz/dt, and the magnitude v' of its perpendicular
velocity. However, in practice it is more convenient to use the electron’s magnetic
moment e ; mev2

'/2B as the independent variable, rather than v' , since e is an
adiabatic invarient. Here, B is the magnitude of the magnetic field. The equation
of motion for an electron, between collisions, includes a mirror force term and is

dvi

dt
5 2eEi 2 e

B
z

. (8)

Within our quasineutral formulation, the electric field component parallel to B is
then specified by the electron momentum equation in the form

2eEi 5
B
ne



z

Pei

uBu
1 e

B
z

1 nemeuei 1
1
ne



t
(nemeuei), (9)

where Pei and Pe' are the electron kinetic pressure parallel and perpendicular to
B, and e ; Te'/B is the mean magnetic moment for electrons at a given location.
[Note that the mirror force vanishes from Eq. (9) if Pei 5 Pe' .] As in the previous
section, we simply drop the inertial term in (9) and replace Pei by niTe , so that Ei

is specified by the equation

2eEi 5
B
ni



z

niTei

uBu
1 e

B
z

1 nemeuei . (10)

The determination of the transverse electric field E' involves the ion dynamics and,
in the case of a bounded plasma in a conducting vessel, also couples to the sheath
potentials. This will be discussed in a subsequent publication [35].

3. FORMAL ANALYSIS OF MODE STRUCTURE AND STABILITY

A. Linearized Normal Modes

To elucidate the way in which the electric field from Eq. (4) or Eq. (10) couples
the electron and ion densities, we shall examine the linear normal modes supported
by the system. Assuming an equilibrium with uniform density n0 and temperature
T0 , linearizing Eq. (4), assuming normal modes of the form ei(kz2gt), and neglecting
collisions, we have

2eE 5 ikTe 1
ikT0

n0
ni . (11)
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In the analysis of this section, we use linearized cold fluid equations for the ions,
so that

ni 5
ikn0eE
g2mi

. (12)

Combining Eqs. (11) and (12), we find

eE 5 2
ikTe

1 2 k2c2
s /g2 , (13)

where c2
s ; Te/mi . To complete the analysis, we use the linearized Vlasov equation

for the electrons,

fe

t
1 v

fe

z
2

n0eE
me

F0

v
5 0, (14)

where F0(v) is the normalized equilibrium electron velocity distribution and
fe(z, v, t) is now the first-order perturbation. Using (13) in (14), we find

fe 5 2
Te

me

1
1 2 k2c2

s /g2

F90(v)
v 2 g/k

. (15)

Te can be calculated by using

ne 5 e dv fe(v) (16)

and

neT0 1 n0Te 5 e dv mv2fe(v). (17)

Using (16) and (17) in (15) yields a dispersion relation

1 2
k2c2

s

g2 1 E dv(v2 2 v2
e)F90(v)

v 2 g/k
5 0. (18)

We note first that if cs R 0, so that the ions are immobile, then

g 5 6kve. (19)

is a pair of exact solutions of Eq. (18). Here, ve ; ÏTe/me is the electron thermal
velocity. This mode represents the unphysical high frequency oscillations that keep
the electron density closely coupled to the ion density. However, the oscillation
frequency g is much smaller than gp . In a simulation with spatial grid scale Dz,
the frequency is limited to g , ve/Dz, and if there is any spatial smoothing the
highest-k modes are strongly damped, so that the highest meaningful frequency is
actually much less. In a typical application such as our ECR simulations, Dz may
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be about 1 cm, and ve/Dz of the order of 108 sec21, as compared to gp of order
1011 sec21.

We next examine the mode structure when cs ? 0. To perform the integrals
simply in closed form, we assume that F0(v) is a Lorentzian distribution,

F0(v) 5
1
f

ve

v2 1 v2
e
. (20)

Then Eq. (18) becomes

1 2
k2c2

s

g2 5 2
2
f
Ey

2y

dx x(1 2 x2)
(1 1 x2)2(x 2 V)

, (21)

where x ; v/ve and V ; g/kve . The contour for the integral in Eq. (21) can be
closed above, and according to causality the pole at x 5 V is to be enclosed in the
contour, even if Im V is negative. Using the method of residues, Eq. (21) reduces to

1 2
me

mi

1
V2 5 2

2V2 2 iV(1 2 V2)
(1 1 V2)2 . (22)

If we multiply out the denominators in (22), we obtain a sixth-order polyno-
mial equation,

V2(1 1 V2)2 2 4V4 1 2iV3(1 2 V2) 5
me

mi
(1 1 V2)2. (23)

We know that two of the roots lie at V 5 61 if me/mi R 0. Assuming that these
two roots lie close to 61, a perturbative solution gives

g 5 kve S61 1 i
me

mi
D . (24)

These modes are thus seen to be slightly unstable, by order me/mi . However, this
degree of instability is of no significance; the mode growth is so slow that it is
obliterated by any of a number of incoherence effects that occur in all simulations.
For example, we shall show in the next subsection that even the slightest degree
of spatial smoothing damps the modes. As a practical matter, we can regard these
as stable or damped modes that efficiently couple ne to ni to maintain quasineutrality.

Next, we look for low frequency modes with uVu ! 1. Keeping only lowest
order in V in the real and imaginary terms of Eq. (23), we find one pair of low-
frequency roots,

g 5 kcs S61 2 i !me

mi
D . (25)
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These are the ion sound modes, with the correct dispersion relation in the limit
lD R 0, and with the correct representation of electron Landau damping for the
Lorentzian distribution (20). We show in the Appendix that when a complete Vlasov
treatment is used, the quasineutral model gives the correct results for both electron
and ion Landau damping, and that the representation remains correct if there is
electron–ion streaming.

The last two roots of the sixth-order equation (23) are a double root at V 5 i.
However, this is a spurious root, which is not a root of the original equation (22).
Thus the formalism supports only two pairs of modes. One pair is the ion sound
mode, correctly represented. The second pair of modes are the (unphysical, but
essentially stable) high frequency modes which tightly couple ne to ni and thus
preserve quasineutrality.

B. Effect of Spatial Smoothing

In practice, we find that it is necessary to apply some spatial smoothing to the
electric field, as is often done in particle simulations [36], to overcome the fluctua-
tions that are introduced by particle statistics and (in our case) are enhanced by
the derivative operation in Eq. (4). One might wonder about the effect of smoothing
on the stability of the scheme. Thus we reexamine the mode structure in the presence
of smoothing.

The smoothed electric field Ẽ may be represented as

Ẽ(z) 5 Ey

2y
dz9 K(z 2 z9)E(z9), (26)

where E(z) is given by

2eE(z) 5
Te

z
1

T0

n0

ni

z
, (27)

and K(z 2 z9) is some symmetric kernel normalized to unity. Typically, K(z 2 z9)
will be a smooth bell-shaped curve whose width at half-maximum, D, exceeds
the cell size but is narrower than the wavelengths of primary interest. In Fourier
representation, the convolution becomes simply

2eẼk 5 2eKkEk 5 ikKkTe 1 ikKk
T0

n0
ni . (28)

Note that the Fourier transform Kk is always real, and 1 $ uKku for all k. For long
wavelengths where kD ! 1, the smoothing coefficient Kk R 1 and the effect of
smoothing is small but not zero. Using (28) in place of (11), we can retrace the
derivation of the dispersion relation (22). We obtain the modified form

1 2 Kk
me

mi

1
V2 5 2Kk

2V2 2 iV(1 2 V2)
(1 1 V2)2 . (29)
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Equation (29) can be solved in the same way as (22). Again, there are four genuine
roots. The two high-frequency modes which couple the electrons to the ions are now

gk 5 kve F6Ï(2 2 Kk)Kk 2 i S1 2 Kk 2
me

mi
DG . (30)

These modes are now seen to be damped as long as 1 2 Kk . me/mi . Even the
slightest degree of damping easily satisfies this condition for all modes. For example,
if K(z 2 z9) is a Gaussian kernel with width D equal to two cells, then the Fourier
transform kernel is Kk 5 exp(2k2 D2); short wavelengths are strongly damped, and
all wavelengths out to 250 cells are at least weakly damped. In practice, we believe
that the modes will be stable even if there is no formally applied smoothing; the
smoothing effect of finite-size particles, and other standard numerical effects, will
be sufficient to overcome the very slight degree of instability seen in Eq. (24). Thus,
we conclude that the formula (4) for calculating the quasineutral field is indeed
stable, and will cause the electrons to follow the ions in a quiescent fashion.

The two low-frequency solutions of (29) are

gk 5 kcsK1/2
k S61 2 iK3/2

k !me

mi
D . (31)

Thus, as might be expected, the ion sound waves experience a reduction in frequency
and in Landau damping, if there is smoothing on a scale comparable to the wave-
length. Obviously, if one wishes to resolve sound waves of a given wavelength l,
the width of the smoothing kernel would be chosen to be considerably smaller than l.

4. NUMERICAL IMPLEMENTATION

The choice of time steps is limited by a number of considerations, in addition to
the obvious requirement that the time step resolve any time scale of interest, such
as a wave period. (i) Accuracy requires that during a single time step, particles not
traverse a range over which the electric field, or other macroscopic variables, change
significantly. (ii) If collisions are an important aspect of the problem, and Monte
Carlo methods are used to model them, the time steps for each species must also
be limited to a fraction of the collision time. Both of these conditions typically
allow the ion time step to be longer than the electron time step by a factor of the
order of (mi/me)1/2. (iii) In addition, we have seen that Eq. (4) couples the electrons
to the ions by inducing rapid stable electron oscillations with phase velocity equal to
the electron thermal velocity ve . Since these oscillations can be excited by statistical
fluctuations in a single cell, a conservative procedure to avoid numerical difficulties
is to choose the electron time step no larger than the cell size divided by ve , and
to recalculate the electric field acting on the electrons at each electron time step.
In practice, this is a stronger restriction than is usually necessary. We have seen
that the shortest wavelengths are strongly damped by smoothing effects. In addition,
collisional situations are generally more forgiving, and typically allow further in-
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creases in the time step. Thus, to summarize, we use relatively long ion time steps,
chosen to satisfy conditions (i) and (ii), and subdivide these time steps, typically
by a factor of the order of (mi/me)1/2, to obtain electron time steps that satisfy all
three conditions. These conditions permit electron time steps that are typically
three orders of magnitude larger than the time steps Dt , 2/gp that are needed for
conventional PIC codes. The ion time steps are even larger, and in addition the
spatial grid scales can be orders of magnitude larger than lD .

The electric field is calculated as a grid quantity at each electron time step, from
Eq. (4), or Eq. (10) if the plasma is magnetized. This electric field is then applied
directly to the electrons at each time step. To push the ions over a long ion time
step, an electric field is used which is simply the average of the electric fields at
each of the electron time steps during this ion time step. Thus there is significant
temporal smoothing of Eq. (4) or (10), primarily a smoothing of the fluctuations
in Te , which helps to reduce statistical fluctuations in the ion motion.

The electrostatic potential energy of the plasma is e dV(ni 2 ne)ef, and therefore
is zero to the extent that exact quasineutrality is maintained. Thus, in the absence
of inelastic scattering, the total kinetic energy should be conserved. This presumes,
of course, that the electrons and ions see exactly the same electric field. However,
energy conservation is preserved even if the electrons are pushed subject to the
instantaneous electric field, and the ions to a time-averaged field, as long as the
time averaging is properly centered over the ion time step. In practice, the oscillation
of the electrons about the ion density profile means that quasineutrality is not
exactly satisfied at any given time step, and long-term drifts in the total kinetic
energy are possible. However, these are slight and very slow and can be controlled
by maintaining a sufficient number of simulation particles and adequate spatial
smoothing. Some examples will be given.

Because the electric field is calculated from the differential form (4), rather than
an integral form such as Poisson’s equation, it is necessary to use a rather large
number of particles per cell to overcome statistical fluctuations. Furthermore, statis-
tical problems arise first in low-density regions, where the denominator of the first
term of Eq. (4) becomes small. In our 2D ECR simulation code, where there is
significant electron collisionality, we get good results using an average of 100 parti-
cles per cell. Electron collisionality generally helps to smooth things out, and reduces
the required number of particles. The collisionless examples studied in the next
two sections are very severe test cases for the quasineutral method, and require an
even larger number of particles to provide an excellent quantitative treatment. In
the free expansion problem, the required number of particles is set by the low-
density background, where we use 250 particles per cell. In the ion acoustic study,
we simulate Landau damping and mode coupling as well as propagation of a small-
amplitude wave (amplitude 5%); 2400 particles per cell are required to do this.
However, we do not believe that this simulation could be done at all with any other
fully PIC method.

We use a linear laydown for both the electrons and the ions. The ion density
and the pressure are smoothed using standard filtering techniques [1]. The algorithm
for pushing the particles is a centered difference scheme. The electrons are subcycled
with typically 32 electron time steps for each ion time step. For the examples shown
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here, the system is periodic, but in our ECR code the same method is used for a
bounded system [35].

5. AN EXAMPLE: FREE EXPANSION OF A PLASMA

To illustrate the use of the quasineutral formulation, we consider a test problem
which can be solved exactly, and also can be solved analytically within our formula-
tion. Consider the free expansion of a plasma consisting of hot isothermal electrons
and cold ions, beginning with a Gaussian spatial profile in one dimension:

fi(z, v, 0) 5
1

ÏfL0

exp S2
z2

L2
0
D d(v), (32a)

fe(z, v, 0) 5
1

ÏfL0
! me

2fT0e
exp S2

z2

L2
0

2
mev2

2T0e
D . (32b)

Even though this is a problem that is easily solved analytically, it poses a stiff
challenge to a a particle simulation, since there is a wide range in plasma density,
and we assume there are no collisions. (Collisions make it much easier to implement
this type of technique, by smoothing out statistical fluctuations.)

A. Analytic Treatment: Exact Quasineutrality

An exact solution to the Vlasov equation, with initial conditions specified by
Eqs. (32), can be found in closed form. It corresponds to self-similar isothermal
expansion,

fi(z, v, t) 5
1

ÏfLi(t)
exp S2

z2

L2
i (t)D d Sv 2

zL̇i(t)
Li(t) D , (33a)

fe(z, v, t) 5
1

ÏfLe(t) !
me

2fTe(t)
exp F2

z2

L2
e(t)

2
me

2Te(t) Sv 2
zL̇e(t)
Le(t) DG . (33b)

The expansion is driven by the electron pressure, with the ions dragged along by
the electrostatic field. Thus a complete solution, using Poisson’s equation, would
show that Le(t) is larger than Li(t) by a small amount of the order of the Debye
length. But to the extent that quasineutrality is observed, Le(t) 5 Li(t), and Li(t) and
Te(t) are determined by conservation of momentum and energy as the solutions to

L̈i(t) 5
2Te(t)
miLi(t)

, (34a)

Te(t) 5 Te(0) 2
1
2

miL̇2
i (t). (34b)

Equations (34) can be solved for Li(t) in closed form. For the initial conditions
specified by Eq. (32), the solution is

Li(t) 5 ÏL2
0 1 2c2

s0t2. (34c)
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B. Analytic Treatment Using Our Model

Within our model, with E given by Eq. (4), it is easy to show that the electrons
and ions each expand self-similarly, as in Eqs. (33), but with Le(t) not exactly equal
to Li(t). Li(t) and Te(t) are given by Eqs. (34), but Le(t) is given by

L̈e 5 2v2
e S 1

Le
2

Le

L2
i
D . (35)

Rewriting Eq. (35) in terms of D ; (Le 2 Li)/Li , and subtracting (34a) from
(35) gives

D̈ 5 2
2v2

e

L2
i
S(2 1 D)D

1 1 D
1

me

mi
D . (36)

The first term of Eq. (36) causes D to oscillate about an equilibrium point. The
second term causes a very small offset to the equilibrium point. (Interestingly, this
offset is negative, so that in this formulation the ions lead the electrons by a
displacement of order me/mi.) Thus it is reasonable to assume uDu ! 1 and simplify
(36) to

D̈ 5 2S2ve(t)
Li(t) D2

D. (37)

Equation (37) indicates that D oscillates at the rapid frequency g0 5 2ve/Li(t), and
since g0 is fast compared to the time scale for ion motion, these can be considered
to be simple harmonic oscillations at a slowly varying frequency. These oscillations
are not physical; they are the mechanism for coupling the electrons to the ions
within our quasineutral formuation (4). However, they are stable oscillations which
maintain a very small amplitude (in fact, comparable to the statistical fluctuations
that would otherwise be present due to the finite number of particles), and thus
are of no real significance. As mentioned earlier, a conservative condition for
numerical stability is that the time step be less than g21

0 , and in fact, since statistical
fluctuation can occur on length scales down to a single cell size Dz, less than Dz/ve .

C. Numerical Simulation

Figures 1–3 show the results of a numerical simulation of the free expansion
problem, for a hydrogen plasma (mi/me 5 1836). The system is initialized in accor-
dance with Eq. (32), with L0 5 14 cm and Te 5 0.33 eV. However, it was not
possible in the simulation to allow the plasma to expand into a true vacuum, since
the electric field from Eq. (4) depends on the reciprocal of the plasma density.
(The noisy electric field in regions with very low density eventually dominates the
problem.) In order to limit the noise, we added a low density floor (5% of the peak
density) to the Gaussian density profile as can be seen in Fig. 1a. The system was
made very long (400 cells) to avoid end effects, with the result that over half the
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FIG. 1. (a) Initial conditions for the free expansion simulation: ne(z) and ni(z) at t 5 0. (b) ne(z)
and ni(z) at t 5 20 esec. In both cases, ne(z) and ni(z) are essentially indistinguishable.

simulation particles were in the background. In all, we used 200,000 macroparticle
electrons and an equal number of ions. The cell size is Dz 5 1 cm, and the time
step is Dt 5 25 ns.

Figure 1 shows the electron density profile (solid curve) and the ion density
profile (dashed curve) at t 5 0 and t 5 20 es. The deviations from quasineutrality
are visible only at the peak density, and at the boundary with the low-density
background plasma. We note that the expansion is very nearly self-similar, as
predicted. (Eventually, small deviations from self-similarity, due to the presence of
the low-density background, become visible.) Figure 2 shows Li(t) from the simula-
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FIG. 2. Simulation result for expansion of the ion characteristic width Li(t). The x’s are the analytic
result (34c).

tion. The x’s show the analytic solution (34c) for Li(t). We see that the expansion
is smooth, and the analytic solution is well verified. Figure 3 shows plots of the
total electron kinetic energy We(t), the total ion kinetic energy Wi(t), and the total
kinetic energy W(t). We note that the effect of the expansion is to convert the
electron kinetic energy (which is nearly all thermal) to ion streaming energy. Overall
kinetic energy is conserved to within 4%. To the extent that quasineutrality is

FIG. 3. Time dependence of the electron kinetic energy We(t) (dot-dashed curve), ion kinetic energy
Wi(t) (dashed curve), and total kinetic energy W(t) (solid curve) during free expansion.
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maintained, there is essentially no potential energy, since the electron potential
energy is always exactly the negative of the ion potential energy.

6. SECOND EXAMPLE: ION SOUND

Ion sound with wavelength much greater than lD is a simple example of a plasma
mode that occurs on the ion time scale and maintains quasineutrality. It is therefore
not an easy mode to simulate with a standard PIC code using Poisson’s equation
and a realistic value of me/mi . In Section 3 above, we used a simplified model
(Vlasov electrons with Lorentzian distribution, cold fluid ions) to show that the ion
sound mode is contained within our quasineutral model, and in the Appendix we
provide a full Vlasov analysis that shows that the quasineutral model gives exactly
the correct dispersion relation, including electron and ion Landau damping terms.
Here we show the results of simulations of ion sound within the nearly linear and
nonlinear regimes, with the mass ratio mi/me 5 1836.

A. Standing-Wave Ion Sound in the Linear Regime

We initiate an ion sound standing wave by loading initial particle densities

ne 5 ni 5 n0[1 1 a sin(2fz/L)], (38)

with the fluid velocities ue and ui initially zero for both species. The simulation is
done with periodic boundary conditions in a 1D system of length 2L 5 25 cm, with
cell length Dz 5 0.125 cm; thus, there are two wavelengths within the box, and 100
cells per wavelength. The wave amplitude is taken to be a 5 0.05, and 2400 particles
of each species are used, per cell. A very large number of particles is needed for
this simulation to resolve the very small wave amplitude. The electron temperature
is set to 1.33 eV, so that ve 5 4.8 3 107 cm/sec, cs 5 1.1 3 106 cm/sec, and the
wave period should be L/cs 5 11.3 es. The ions are initially cold. The ion time
step is 15.6 ns, and the electrons are subcycled four times per ion time step.

The temporal evolution of the fundamental (wavelength L) Fourier mode of ne

and ni is shown in Fig. 4. The densities are taken from the Fourier transforms of
the instantaneous values of ne(z) and ni(z) at the ion time step. We see that the
wave period is 11.1 es, in excellent agreement with the theoretical value. We note
that at any given time, quasineutrality (ne 5 ni) holds to better than 5%. Plots of
the spatial dependence of the wave (not shown) indicate that the two wavelengths
contained within the box are exactly the same.

Equation (A9) predicts Landau damping at the rate 9% per wave period. How-
ever, in a one-dimensional ion sound wave, even at wave amplitude a 5 0.05,
trapping of the resonant electrons interferes with Landau damping at a very early
stage. The trapping frequency is gT 5 ÏkeE/me, and according to the linearized
version of Eq. (4), E 5 kaTe . Thus

gT 5 kcs!a
mi

me
5 9.6 kcs , (39)
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FIG. 4. Temporal evolution of the standing ion sound wave: electron density fundamental mode
(solid curve), ion density fundamental mode (dashed curve), and electron density second harmonic
mode (dotted curve). Each of the curves plots the absolute value of the wave amplitude.

and Landau damping should be over in a fraction of a wave period. The slight
damping seen in Fig. 4 thus would seem to be the initial Landau damping, followed
by a slower damping due to mode coupling to higher harmonics. The envelope of
the second harmonic amplitude (wavelength L/2) grows to a level of 13% of the
fundamental after two periods, as shown in Fig. 4. This is in excellent agreement with
simple two-mode coupling theory, which predicts 15% at this time, and consequent
damping of the fundamental by about 1.5%. From a computational point of view,
we note that our grid resolution of 100 grid points per fundamental wavelength
(i.e., 50 points per second harmonic wavelength) is necessary for a quantitatively
accurate treatment of Landau damping and nonlinear processes in this very low-
amplitude wave.

B. Nonlinear Traveling Wave

The nonlinear evolution of a standing wave is complex, but for traveling sound
waves an analytic solution is possible via the method of characteristics [37]. Since
lD is set to zero within our model, the ion sound waves are nondispersive, and
therefore the mode coupling theory is essentially the same as that of ordinary
sound waves in a neutral gas [37], with Te playing the role of the gas temperature.
(However, ion sound waves are isothermal, [38] whereas sound waves in a molecular
gas are adiabatic. Therefore the adiabatic constant c must be set to unity in the
ion sound theory.) The velocity is found to be the solution of the implicit equation

u(z, t) 5 u(z 2 u(z, t)). (40)



557QUASINEUTRAL PIC SIMULATION

It is well known that Eq. (40) leads to steepening of the density and velocity
profiles, and ultimately to wave breaking when u/z becomes infinite. For an initial
sinusoidal profile

u(z, 0)
cs

5 a sin S2fz
L D ; (41)

this occurs when

t 5 tbreak 5
L

2facs
. (42)

In Fig. 5 we show the results of a simulation similar to those of the previous
subsection, except that the wave amplitude is larger at a 5 0.20 and a traveling
wave is initiated by setting the initial ion fluid velocity as in Eq. (41). We note the
steepening of the wave up to the point of breaking at about t 5 9 esec, in good
agreement with the theoretical prediction t 5 9.04 esec. As the wave nears the
breaking point, nonphysical structure such as the ripple and sharp peak in Fig. 5b
begin to appear. These features appear to be associated with finite spatial resolution,
and limit the accuracy of determination of the breaking point by perhaps 1 esec.
After wave breaking, the quasineutral theory is no longer correct, since lD length
scales are relevant to the subsequent evolution of the ion acoustic shocks.

7. CONCLUSIONS

We have presented a method for doing plasma simulations with particle electrons
and particle ions, in the quasineutral limit. The method permits (indeed, it requires)
the use of grid spacing long compared to lD and time stepping long compared to
g21

p . We have demonstrated analytically that the method is stable (at least on a
continuous time basis), and that it gives the correct dispersion relation for ion
sound, including Landau resonance terms. We have also demonstrated the use
of the method to simulate free expansion of a plasma, and linear and nonlinear
ion sound.

We believe that the technique presented here should be useful for a variety of
problems involving quasineutral plasmas. We are using this method in a 2D simula-
tion code for magnetized plasmas, which includes in addition cross-field transport,
sheaths at insulating or conducting walls, ECR heating, and collisions and chemistry.
The techniques used to model these other aspects of the physics will be discussed
in [35] and subsequent publications. The code runs for very long times (hundreds
of esec), with time steps typically on the order of 10 nsec, and with running time
typically on the order of a few hours on an IBM RS6000 workstation.

APPENDIX: VLASOV THEORY OF ION SOUND

In this section we show analytically that our quasineutral formulation, using the
approximate form (4) for E, gives exactly the correct dispersion relation for linear-
ized ion sound waves, including even the electron and ion Landau damping terms.



FIG. 5. Density profiles showing steeping of the traveling ion sound wave: (a) t 5 0, (b) t 5 5.75
esec, (c) t 5 9.0 esec.
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Review: Vlasov–Poisson Theory of Ion Sound

To clarify the issues involved, we begin with a brief review of the standard
derivation of the ion sound dispersion relation from the linearized 1D Vlasov
equation,

fa

t
1 v

fa

z
7

n0eE
ma

F0a

v
5 0, (A1)

with the upper sign for electrons and the lower sign for ions, and with the electric
field E determined by Poisson’s equation. Using a linearized normal mode represen-
tation for the perturbed part of the distribution function fa , we find

fak(v) 5 6
in0eE

ma

dF0a

dv
1

g 2 kv
, (A2)

and the species densities nak are

nak 5 6
in0eE

ma
E dv F90a(v)

g 2 kv
. (A3)

Inserting (A3) into Poisson’s equation,

ikEk 5 4f(nek 2 nik), (A4)

we obtain the dispersion relation,

0 5 1 2
g2

pe

k2 E dv
F90e(v)

v 2 g/k
2

g2
pi

k2 E dv
F90i(v)

v 2 g/k
, (A5)

where causality indicates that the contours in Eqs. (A3) and (A5) go below the
pole at v 5 g/k. The usual dispersion relation for ion sound can be obtained by
making several approximations in Eq. (A5). First assume that the imaginary part
of g/k is small. Let u (which may be zero) be the relative electron–ion drift, and
assume that F0i(v) is a symmetric function of v, but F0e is a symmetric function of
w ; v 2 u. Assume that Te @ Ti , u ! ve , and vi ! g/k ! ve . Then the first integral
in Eq. (A5) can be treated by first extracting the contribution from the pole at
v 5 g/k, and then expanding the remaining nonsingular integral under the assump-
tion that g/k ! uwu and u ! uwu for nearly all electrons:

E dv F90e(v)
v 2 g/k

> 2ifF90e Sv 5
g
kD1 E dw F90e(w)

w F1 1
g/k 2 u

w
1 Sg/k 2 u

w D2G . (A6)

The second integral in Eq. (A5) can be treated by first extracting the contribution
from the pole, and then expanding the remaining integral under the assumption
that g/k @ uvu for nearly all ions:
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E dv F90i(v)
v 2 g/k

> 2ifF90i Sg
kD2

k
g

(A7)

dv F90i(v) S1 1
dv
g D5 2ifF90i Sg

kD1
k2

g2 .

Keeping only the leading term in the expansion (A6) gives the dispersion relation,

0 5 1 2
g2

pe

k2 E dw F90e

w
2

g2
pi

g2 1
k2g2

pi

g4 E dv v3F90i 2
if
k2 Fg2

peF90e Sg
kD1 g2

piF90i Sg
kDG .

(A8)

In the case of Maxwellian velocity distributions, this reduces to the familiar form

g 5
kcs

(1 1 k2l2
D)1/2 1

if
2

kcs

(1 1 k2l2
D)3/2 FTe

me
F90e Sg

kD1
Te

mi
F90i Sg

kDG . (A9)

Quasineutral Derivation

In the quasineutral context, the electric field is determined by the linearized form
of Eq. (4),

2eEk 5
ikPek

n0
1

ikP0e

n2
0

(nik 2 nek), (A10)

with

Pek 5 e dv fek(v)mev2 5 in0eE E dv F90i(v)
g 2 kv

. (A11)

Using Eqs. (A3) and (A11) in (A10), we obtain the dispersion relation

0 5 1 1 E dv(v2 2 v2
e)F90e

v 2 g/k
2 c2

s E dv F90i

v 2 g/k
. (A12)

Equation (A12) looks different from Eq. (A5). Nevertheless, using the expansions
(A6) and (A7) but keeping all terms shown in (A6) gives

0 5 2
g2

pe

k2 E dw F90e

w
2

g2
pi

g2 1
k2g2

pi

g4 E dv v3F90i 2
if
k2 Fg2

peF90e Sg
kD1 g2

piF90i Sg
kDG .

(A13)

Equation (A13) is identical to Eq. (A8), except for the absence of the first term
on the RHS of (A8). This term is smaller than the other terms in (A8) by order
k2l2

D , and thus disappears in the quasineutral limit klD R 0.
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